UCLA molecular biologists Rie Takahashi and Jeffrey H. Miller have converted protein sequences into original classical music.
"We converted the sequence of proteins into music and can get an auditory signal for every protein," said Jeffrey H. Miller, distinguished professor of microbiology, immunology and molecular genetics, and a member of UCLA's Molecular Biology Institute. "Every protein will have its unique auditory signature because every protein has a unique sequence. You can hear the sequence of the protein."
"We assigned a chord to each amino acid," said Rie Takahashi, a UCLA research assistant and an award-winning, classically trained piano player. "We want to see if we can hear patterns within the music, as opposed to looking at the letters of an amino acid or protein sequence. We can listen to a protein, as opposed to just looking at it."
The building blocks of proteins are linear sequences of 20 different amino acids. Assigning one note for each amino acid therefore results in a 20-note scale.
"A 20-note scale is too large a range," Takahashi said. "You need a reduced scale, so we paired similar amino acids together and used chords and chord variations for each amino acid. We used each component of the music to indicate a specific characteristic of the protein. We are faithful in the conversion from the sequence to the music. The rhythm is dictated by the protein sequence."
You can listen to the compositions and even submit your own genetic sequence and have it transcribed @ http://www.mimg.ucla.edu/faculty/miller_jh/gene2music/examples.html
No comments:
Post a Comment